
“If agile has been around since the 1990s and DevOps tools
have been around since the late 2000s, then why can’t our data-
base development catch up with our application development?”

Are people in your organization asking that question? Are you
one of them?

Indeed, what’s taking the database so long? Why has database
development been slow to adopt agile, DevOps, continuous
delivery tools and continuous integration? How can an organi-
zation move its database change management into a DevOps
pipeline and efficiently bring about continuous database
operations?

This technical brief examines the database DevOps solutions
from Quest, designed for database developers and DBAs. Read-
ers trying to achieve continuous database operations will see
what those tools and practices look like and learn ways to bring
the pace of database development into parity with that of appli-
cation development.

MODERNIZING AND FUTURE-
PROOFING THE DATABASE

So, why is database development different from application
development? The short answer has to do with database state.

Businesses rely on databases and can tolerate little risk to
them. Suppose a change to application code goes out in a code
release, then must be rolled back to last week’s version due to a
bug. The organization can do that without losing user data. But
a change to procedural code like PL/SQL goes out in the data-
base. Rolling back to last week’s version would mean losing a
week’s worth of transactions.

What’s on a database developer’s mind?

Database development teams trying to get around that funda-
mental difference and future-proof their databases face a
rocky landscape:

•	 Pressure to build, test and release software changes faster —
The business pushes for continual updates that add value and
keep customers engaged. For them, applications and underlying

Continuous Integration
Tools: A DevOps Guide
for Database Developers
and DBAs
How automation supports continuous database operations and faster releases

Written by John Pocknell, Sr. Solutions Product Marketing Manager, Quest® Software

https://www.quest.com/solutions/devops/
https://www.quest.com/solutions/devops/

2

databases are vehicles for building revenue
and maintaining a competitive edge.

•	 Compromises necessary to shorten
release cycles — How can a development
team tighten database releases from
every two months to every two weeks?
By adding developers? By cutting corners
with testing? Paradoxically, cutting things
out is the wrong approach; in DevOps,
things will happen more quickly, so
more things must happen, and they must
happen right the first time to reduce the
possibility of unplanned rework. The
team will in fact start adding tasks to
ensure quality, not eliminating them.

•	 Monitoring how database changes
affect performance — Before and
after changes go live, it’s useful to see
how they affect all the databases in
the pipeline. Monitoring tools gauge
the performance impact on database
performance from test through production.

•	 Replication to hybrid database
environments — Organizations with
on-premises and cloud databases
often keep mirror copies as offline,
reporting instances. Once database
changes start moving through a DevOps
pipeline, they need to be replicated
quickly to the other databases.

Most of all, is it even possible to bring
database processes into the DevOps
pipeline, given the contrasting lifecy-
cles between database development
and application development? In most
organizations, it’s not obvious; otherwise,
they would have brought the two into
parity long ago.

Bringing database processes
into the DevOps pipeline

Consider the prominent role that
automated workflow plays in applica-
tion development (and rarely plays in

database development), as depicted
in Figure 1.

In the upper half, application develop-
ers check changes into source control
management (SCM), triggering an auto-
mated build process. The ensuing
compile-test-review cycle promotes the
build artefacts to the next stage in the
pipeline (Test, Stage and finally Prod).
Any defects in the build are sent back to
the development team.

By contrast, the lower half shows how
database development moves in a linear
fashion with slow, manual release cycles.
The diagram assumes the use of SCM,
but not all database development teams
use SCM for changes to procedural code.
Nor is unit testing of procedural code a
given in all organizations.

The result is a bottleneck (at the “Yield”
symbol) because the application
changes cannot be released until the
database processes have caught up.

In short, database development teams
are not performing some of the tasks
most essential in bringing their oper-
ations into a DevOps pipeline. That is
how database development becomes a
bottleneck in what is, up to this point, a
fairly agile process.

But there’s more to getting the database
into the DevOps pipeline than simple
acceleration. Another big differentiator
about databases is that it’s necessary to
keep them safe. In an era of regulations
like GDPR and HIPAA, organizations
are worried about protecting personally
identifiable information (PII), so IT is reluc-
tant to share it. Yet preproduction teams
want to use production data for testing

Rolling back a database
to last week’s version
would mean losing
a week’s worth
of transactions.

D
at

ab
as

e

Dev SCM

Build Test Review Compare
& Sync Deploy

Build Test Review Compare
& SyncManual

Manual

Manual

Manual Manual Manual

Manual

Manual

Prod

Stage

Test

Dev SCM

Automatic Automatic

Development

Ap
pl

ic
at

io
n

Development Operations

Operations

Dev Ops

Build

Test

Review Prod

Stage

Test

YIELD

Figure 1: Different lifecycles for application development and database development

3

because it’s closer to real-world condi-
tions than synthetic data.

It’s not easy to reconcile the agility of
application development with slow data-
base releases.

WHY CHANGE?

The biggest rationale for agile devel-
opment is that it will result in an agile
business, where things happen quickly.
Web apps are ideal in that environment
because they allow for much quicker,
more-frequent changes than do other
types of software.

There are both technical and business
consequences of not changing.

•	 Release delays — These are a way
of life, especially when database
changes are integral to the application
release. Delays pose a risk to revenue,
market share and competitive edge.

•	 Testing and reliability — It’s tempting
to reduce database testing as a
way of releasing into production
sooner. But insufficient testing — of
both procedural code and scalability/
performance — may result in downtime,
or poor application performance at
least. And, as noted above, production
databases have more data, more users
and are constantly growing. Unless
those conditions are simulated in the test
databases, the testing is inadequate.

•	 Competitive disadvantage — Bringing
database development into the DevOps
pipeline is hardly a trade secret.
Companies everywhere are working
on continuous improvement, and the
ones that attain it first will change

faster and add more value to their
applications than their competitors will.

A DevOps pipeline that converges
application and database changes
would remove the bottleneck. That’s
what companies large and small are
looking for.

BUT WHAT IF...

What if it were possible to develop and
deploy high-quality database changes
faster, together with application changes,
in a converged pipeline, without having
to make compromises?

What if it were possible to monitor and
identify performance issues throughout
the DevOps pipeline before going into
production, so that database releases
are reliable and under control?

What if it were possible, once schema
changes are deployed, to automati-
cally replicate them from production
to other database environments in
nearly real time?

That would remove the database devel-
opment bottleneck, improve the quality
of releases and make applications and
databases available to users almost
simultaneously.

SCENARIO WALK-THROUGH

Consider the functions depicted
in Figure 2.

•	 Develop — On the left, development
teams in the organization are using
development tools, maintaining and
making changes to database code, and

It’s not easy to reconcile
the agility of application
development with slow
database releases.

Develop

Replicate

Test

Build and deploy

On-premises
databases

Cloud
databases

Source control
system

Developer
machines

Dev Integration

Build
automation

server

QA Staging Production

•Git
•Subversion
•Team Foundation Server
•Others

Figure 2: Typical IT infrastructure

4

checking changes into a source control
system. From there, the changes go
to the development environment.

•	 Build and deploy — In the upper middle is
the company’s build-and-deploy system
(for example, Jenkins, Atlassian Bamboo
or Team Foundation Server) running
on a build automation server. Some
organizations have orchestration software
sitting above that to keep an eye on the
big picture and control other operations.

•	 Test — In the lower middle are
different database environments:
integration, QA and staging.

•	 Replicate — On the right is the production
system; Oracle, for instance. On premises,
external customers and internal business
users use this production database. The
company replicates the prod database
to a copy running in the cloud; that could
be Oracle Cloud Platform, Amazon
Web Services (AWS), Microsoft Azure
or another cloud provider. Replication
keeps the cloud database in sync with
changes to prod. Cloud databases can
be used for offline reporting to offload
work from the main on-premises system.

Now consider a typical database
management problem that could easily
affect all of those functions.

1.	 One of the production DBAs discovers
a pattern of poor performance in
several critical databases. The problem
arises only at the end of the month.

2.	Operations wants to identify the root-cause
quickly and without the usual finger-
pointing between database and network
teams that complicates root-cause analysis.

3.	Then, supposing that Operations
establishes that it is a database problem
rooted in some Oracle procedural code,
the database developers need to diagnose
the problem, modify code for the next
sprint and check it into source control.

4.	Throughout the pipeline, any changes
to procedural code (SQL and PL/SQL)
need to be regression tested and tested
for performance to ensure the changes
will scale. DBAs often complain that their
colleagues assume code will run fine in
prod because it ran fine on test databases.

5.	Finally, changes in on-premises
databases need to be replicated
quickly to cloud databases.

Imagine putting in place all the tools to
accelerate those functions along the
database development pipeline.

WHAT WOULD THE IDEAL
SOLUTION LOOK LIKE WITH
PRODUCTS FROM QUEST?

A number of Quest products are
designed to provide insight and automa-
tion at each point in that typical scenario,
as shown in Figure 3.

1. Monitor — Foglight® for Databases

The organization uses Foglight for Data-
bases to monitor performance not only
on database platforms as diverse as
Oracle, SQL Server, MySQL, MongoDB,
Cassandra and PostgreSQL, but also
on all database servers throughout the
DevOps pipeline. When performance on
a particular instance exceeds thresholds

Imagine putting
in place all the
tools to accelerate
those functions
along the database
development pipeline.

Toad® DevOps
Toolkit

Toad® EdgeDevelop

Monitor

Replicate

Test

Build and deploy

On-premises
databases

Cloud
databases

Toad® for Oracle
Toad® Edge

SharePlex®

Foglight®

Benchmark
Factory®

Source control
system

Dev Integration

Build
automation

server

QA Staging Production

•Git
•Subversion
•Team Foundation Server
•Others

Figure 3: Quest DevOps infrastructure

5

the DBAs have set, Foglight notifies
them. In this case (see Figure 4), Foglight
detects a performance problem with an
on-premises Oracle database.

The DBA uses Foglight to drill into dimen-
sional views of the performance problem
and determines from long-term history
that it’s a recurring problem at month-
end. Foglight links the spike in Active
Time shown in Figure 5 to the offending
SQL statement, which belongs to a block
of procedural code in a PL/SQL program.

The DBA creates a ticket for database
developers to fix and stage the schema
changes with others in the sprint for
delivery through the DevOps pipeline.

The exercise in root-cause analy-
sis is refreshingly devoid of the usual
finger-pointing because database perfor-
mance monitoring with Foglight shows
exactly where the problem lies.

2. Develop — Toad® for
Oracle and Toad Edge

Toad for Oracle and Toad Edge help
bring database development — Oracle,
MySQL and PostgreSQL — into the
DevOps pipeline at several points.

•	 PL/SQL code profiling — In Toad for
Oracle, developers check the indicated PL/
SQL program out of source control. To save
time in the DevOps pipeline, developers
want to be able to tune the statement
themselves without engaging in a trial-and-
error loop with the DBA. Code profiling
in Toad for Oracle shows developers how
long each SQL statement takes to run.

•	 Regression testing — Once the SQL
statement is optimized, developers
should perform regression testing
on all the changes made to the PL/
SQL code. In practice, however, few
database development teams can
make time for this testing. Toad for
Oracle simplifies the creation of unit
tests, then stores their definitions in a
repository, greatly shortening the test
phase without compromising quality.

The exercise in root-
cause analysis is
refreshingly devoid
of the usual finger-
pointing because
database performance
monitoring with Foglight
shows exactly where
the problem lies.

Figure 4: Foglight for Databases – Performance problem in Oracle database

Figure 5: Foglight for Databases – Drill-down into a database performance problem

6

•	 Static code reviews — Most database
code reviews are peer reviews conducted
manually, yet another obstacle to
agile database development. Toad for
Oracle includes an automated code
review system in which development
teams can define rules, then review
changes to ensure adherence to the
organization’s standards for code quality.
Only a rules-based system can ensure
automated reviews and consistency
across the entire developer team.

•	 Check-in — The developer checks in
the PL/SQL program, associated unit
tests and coding standards to source
control. Toad DevOps Toolkit will use
everything that gets included within that
build package — code, tests and coding
standards. Developers can share them
with other developers and testers can use
them in the next automated build cycle.

3. Build and deploy — Toad
DevOps Toolkit and Toad Edge

Continuous integration/continuous deliv-
ery (CI/CD) includes the foregoing steps,
for both application and database devel-
opment, as part of the automated build
and deployment process.

For the Oracle environment, Toad
DevOps Toolkit integrates with CI/CD
tools running on any build automation
server, including Jenkins, Bamboo and
Team Foundation Server. (For PostgreSQL
and MySQL, Toad Edge integrates
with those CI/CD tools.) Similar to the
check-in of application code, it can auto-
matically execute PL/SQL unit tests and
code reviews against procedural code
checked into source control. It also sends
Pass/Fail notifications indicating whether
the build is ready to be deployed, as
shown in Figure 6.

Once the developers are satisfied that
the build is ready for promotion in the
next pipeline stage, it’s important to
create accurate deployment scripts
based on the differences between
source and target. The scripts auto-
mate the promotion of data definition
language (DDL) and data changes into
the target database. Toad DevOps
Toolkit compares database configu-
ration, schema objects and the data
itself, ensuring that the changes to be
deployed will make the target database
the same as the source database.

Only a rules-based
system can ensure
automated reviews and
consistency across the
entire developer team.

Figure 6: Toad DevOps Toolkit – Jenkins console output showing unit tests and code
review results

7

4. Test — Benchmark
Factory for Databases®

Will the changes made to the database
schema scale up to production-level
volume? It takes time to address that
question with manual testing — time that
many database teams simply don’t have.
And yet, production DBAs often complain
about the lack of scalability for changes
that come from development. To get
scalability testing into the DevOps pipe-
line requires automation.

Benchmark Factory for Databases
is designed to simulate real-world
transaction workloads. It captures
production-level activity and replays it
in test or development environments, as
shown in Figure 7.

By running loads against SQL scripts, PL/
SQL, T-SQL code, stored procedures

and schema changes, Benchmark
Factory for Databases allows DBAs to
perform scalability testing with produc-
tion-level volume.

For changes to Oracle databases, Bench-
mark Factory can be called automatically
via a REST API to replay a previously
captured Oracle workload. DBAs can
see, based on actual production work-
load, whether the planned changes will
scale in production.

Testers can set service-level agreements
(SLAs) on parameters like transaction
response time as a threshold (see hori-
zontal dotted line in Figure 7. If the
changes made to the database are going
to cause performance to fall below that
threshold, it’s better to find out before
pushing them to production.

DBAs often complain
about the lack of
scalability for changes
that come from
development. To get
scalability testing into
the DevOps pipeline
requires automation.

Figure 7: Benchmark Factory (BMF) for Databases – Automated performance testing

8

5. Monitor — Foglight for Databases

At the beginning of this scenario, DBAs
used Foglight for Databases to identify
and diagnose the performance prob-
lem. As shown in Figure 8, they can
use Foglight again to compare perfor-
mance before and after changes were
made to the database schema or
procedural code.

This Foglight feature is called Change
Tracking. It allows DBAs to assess perfor-
mance changes either in Test, while
using Benchmark Factory during a work-
load replay, or in production, to assure
them that all changes have had the
desired effect.

6. Replicate — SharePlex®

By using an offline replica running in the
cloud, IT keeps the queries and report-
ing workloads of analysts and business
users off the production databases. They
notice a big jump in responsiveness
when they run their queries.

SharePlex moves schema changes and
transactions from source to target data-
bases continuously in near real time. It
replicates changes between different
Oracle database versions and between
on-premises databases and cloud data-
bases for a range of business purposes,
as shown in Figure 9.

By using an offline
replica running in the
cloud, IT keeps the
queries and reporting
workloads of analysts
and business users
off the production
databases.

SharePlex

Integrate data

Support analytics

Improve performance

Migrate and upgrade

Increase scalability

Ensure availability

Figure 9. With SharePlex, you get a complete Oracle replication solution that supports
a variety of use cases.

Figure 8: Foglight for Databases – Review of database changes in production

9

CONCLUSION: CONTINUOUS
DATABASE OPERATIONS

When organizations become serious
about integrating database develop-
ment and change management into their
DevOps pipeline, the result is continuous
database operations.

With the database DevOps tools from
Quest, you can accelerate the process of
developing, testing and releasing data-
base changes. You can also monitor
the effects of those changes on perfor-
mance and replicate them to offline
databases. Quest provides an easy path
to bring the pace of database develop-
ment into parity with that of application
development.

LEARN MORE ABOUT DATABASE
DEVOPS SOLUTIONS FROM QUEST

Many Quest customers enjoy the bene-
fits of merging application and database
changes using database DevOps solu-
tions. Read about a customer that used
Toad for Oracle and Toad DevOps Tool-
kit to reduce the release cycle for
database changes from eight weeks to
just two weeks.

Toad for Oracle

Toad DevOps Toolkit

Toad Edge

Foglight for Databases

Benchmark Factory for Databases

SharePlex

ABOUT THE AUTHOR

John Pocknell is a senior solutions
product marketing manager at Quest
Software. Based at the European head-
quarters in the U.K., John is responsible
for developing and evangelizing solu-
tions-based stories for Quest’s extensive
portfolio of database products world-
wide. He has been with Quest Software
since 2000, working in database design,
development and deployment. John
has spent over 18 years (including 12
years in Product Management) success-
fully evangelizing Toad to customers at
conferences and user groups around the
world. He blogs and has produced many
videos for Toad World, the Toad user
community, and has authored technical
papers about Toad on the Quest Soft-
ware website.

John has worked in IT for more than 30
years, most of that time in Oracle appli-
cation design and development. He is
a qualified aeronautical engineer with
more than 10 years of experience in
providing IT consultancy services and
implementing quality assurance systems
to ISO 9001.

When organizations
become serious about
integrating database
development and
change management
into their DevOps
pipeline, the result is
continuous database
operations.

https://www.quest.com/solutions/devops/
https://www.quest.com/casestudy/major-financial-firm-advances-devops-with-trusted-database-tools8133654/
https://www.quest.com/casestudy/major-financial-firm-advances-devops-with-trusted-database-tools8133654/
https://www.quest.com/products/toad-for-oracle/
https://www.quest.com/products/toad-devops-toolkit/
https://www.quest.com/products/toad-edge/
https://www.quest.com/products/foglight-for-cross-platform-databases/
https://www.quest.com/products/benchmark-factory/
https://www.quest.com/products/shareplex/

10

TechBrief-DevOpsGuide4DBAs&DBDev-US-KS-38758

ABOUT QUEST

Quest provides software solutions for the rapidly-changing world of enterprise IT. We help simplify the challenges caused by data
explosion, cloud expansion, hybrid datacenters, security threats and regulatory requirements. We’re a global provider to 130,000
companies across 100 countries, including 95% of the Fortune 500 and 90% of the Global 1000. Since 1987, we’ve built a portfolio of
solutions which now includes database management, data protection, identity and access management, Microsoft platform manage-
ment and unified endpoint management. With Quest, organizations spend less time on IT administration and more time on business
innovation. For more information, visit www.quest.com.

© 2019 Quest Software Inc. ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a soft-
ware license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable
agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, includ-
ing photocopying and recording for any purpose other than the purchaser’s personal use without the written permission of Quest
Software Inc.

The information in this document is provided in connection with Quest Software products. No license, express or implied, by estoppel
or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest Software prod-
ucts. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,
QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY
RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT, INDI-
RECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE
THIS DOCUMENT, EVEN IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software
makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and product descriptions at any time without notice. Quest Software does not make any
commitment to update the information contained in this document.

Patents

Quest Software is proud of our advanced technology. Patents and pending patents may apply to this product. For the most current
information about applicable patents for this product, please visit our website at www.quest.com/legal

Trademarks

Quest, Toad, Foglight, Benchmark Factory, SharePlex and the Quest logo are trademarks and registered trademarks of Quest Soft-
ware Inc. For a complete list of Quest marks, visit www.quest.com/legal/trademark-information.aspx. All other trademarks are
property of their respective owners.

If you have any questions regarding your potential use of this material, contact:

Quest Software Inc.
Attn: LEGAL Dept
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our website (www.quest.com) for regional and international office information.

https://www.quest.com/legal/trademark-information.aspx

	_Ref2958485
	_GoBack

